Zebrafish pigmentation mutations and the processes of neural crest development.
نویسندگان
چکیده
Neural crest development involves cell-fate specification, proliferation, patterned cell migration, survival and differentiation. Zebrafish neural crest derivatives include three distinct chromatophores, which are well-suited to genetic analysis of their development. As part of a large-scale mutagenesis screen for embryonic/early larval mutations, we have isolated 285 mutations affecting all aspects of zebrafish larval pigmentation. By complementation analysis, we define 94 genes. We show here that comparison of their phenotypes permits classification of these mutations according to the types of defects they cause, and these suggest which process of neural crest development is probably affected. Mutations in eight genes affect the number of chromatophores: these include strong candidates for genes necessary for the processes of pigment cell specification and proliferation. Mutations in five genes remove part of the wild-type pigment pattern, and suggest a role in larval pigment pattern formation. Mutations in five genes show ectopic chromatophores in distinct sites, and may have implications for chromatophore patterning and proliferation. 76 genes affect pigment or morphology of one or more chromatophore types: these mutations include strong candidates for genes important in various aspects of chromatophore differentiation and survival. In combination with the embryological advantages of zebrafish, these mutations should permit cellular and molecular dissection of many aspects of neural crest development.
منابع مشابه
The zebrafish colourless gene regulates development of non-ectomesenchymal neural crest derivatives.
Neural crest forms four major categories of derivatives: pigment cells, peripheral neurons, peripheral glia, and ectomesenchymal cells. Some early neural crest cells generate progeny of several fates. How specific cell fates become specified is still poorly understood. Here we show that zebrafish embryos with mutations in the colourless gene have severe defects in most crest-derived cell types,...
متن کاملThe Tomita collection of medaka pigmentation mutants as a resource for understanding neural crest cell development
All body pigment cells in vertebrates are derived from the neural crest. In fish the neural crest can generate up to six different types of pigment cells, as well as various non-pigmented derivatives. In mouse and zebrafish, extensive collections of pigmentation mutants have enabled dissection of many aspects of pigment cell development, including fate specification, survival, proliferation and...
متن کاملDev123729 1387..1387
Melanocyte development provides an excellent model for studying more complex developmental processes. Melanocytes have an apparently simple aetiology, differentiating from the neural crest and migrating through the developing embryo to specific locations within the skin and hair follicles, and to other sites in the body. The study of pigmentation mutations in the mouse provided the initial key ...
متن کاملThe melanocyte lineage in development and disease
Melanocyte development provides an excellent model for studying more complex developmental processes. Melanocytes have an apparently simple aetiology, differentiating from the neural crest and migrating through the developing embryo to specific locations within the skin and hair follicles, and to other sites in the body. The study of pigmentation mutations in the mouse provided the initial key ...
متن کاملGeneration and characterization of Kctd15 mutations in zebrafish
Potassium channel tetramerization domain containing 15 (Kctd15) was previously found to have a role in early neural crest (NC) patterning, specifically delimiting the region where NC markers are expressed via repression of transcription factor AP-2a and inhibition of Wnt signaling. We used transcription activator-like effector nucleases (TALENs) to generate null mutations in zebrafish kctd15a a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 123 شماره
صفحات -
تاریخ انتشار 1996